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Abstract
This article deals with the study of concentration of longitudinal dispersion phenomenon,
which occurs in a porous medium. The Elzaki Adomian decomposition method (EADM),
which combines the Elzaki transform and Adomian decomposition method, analyzes an
approximate analytical solution of the governing equation with its convergence analysis. A
comparison of EADM with the variational homotopy perturbation method and new integral
transform homotopy perturbation method is included for the accuracy of the method.
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Introduction

Diffusion and dispersion are processes found in two separate domains—the microscopic
scale diffusion domain and the macroscopic scale dispersion domain [9]. The mixing in a
porous medium of 2 miscible fluids replacing each other is said to be dispersion process. It
is simple to understand if a single fluid is accessible in a porous medium; otherwise, it isn’t
straightforward. Dispersion in the simulated cases is considered to be diffusive. That is, it may
be identified with the equation of convective-diffusion. Longitudinal dispersivity is an order
of magnitude higher than the dispersivity in transverse directions [23]. Dispersion issues
arise in groundwater flow, chemical, and petroleum engineering, oil reservoir, the study of
hydrology, etc. Dispersion is a mixed diffusion process and mechanical dispersion process.
This paper analyzes the phenomenon of longitudinal dispersion in a porous medium. This
phenomenon is observed in coastal regions, in which seawater slowly displaces the fresh
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water-beds. The study consider some assumptions as follows—the medium is homogeneous,
the coefficient of porosity and dispersion are constant, and the velocity of inlet flow is steady.

Many scholars have already examined the physical phenomena from various angles and
perspectives. Recently many researchers have also studied the solution of fractional differ-
ential equations [10,11,17,18,26]. Ebach and White [7] have considered the longitudinal
dispersion phenomenon for an input concentration that changes at regular interval of time.
The dispersion problem in radial flow from totally penetrating, homogenous, isotropic non-
absorbing confined aquifers was presented by Herteman [14]. Bruce and street [5] found
both lateral and longitudinal dispersion within semi-finite non-absorbing porous medium for
a constant input concentration during a steady unidirectional flow fluid. Hunt [15] has applied
the method of disturbance of lateral and longitudinal dispersion in the non-uniform flow of
seepage via heterogeneous aquifers. Patel andMehta [22] have employed a Hope-Cole trans-
formation. Al-Niami and Rushton [3] were researching the measurement of flow in porous
media against dispersion. Marino [19] has studied the analysis of flow in non-absorbing
porous medium toward dispersion. Basha and Habel [4] have determined the analytical solu-
tion of the 1D transportation equation based on time. Sander and Braddock [24] have studied
analytical solutions for transient, unsaturated water and pollutant transport via horizontal
porous media.

This paper’s primary aim is to use the Elzaki Adomian Decomposition Method [29]
to achieve an approximate analytical solution to the problem. The combination of Elzaki
transform [8,12,13] and Adomian decomposition method [2] is given by the EADM. Using
EADM, we get an infinite series solution. Other authors [16,21,29] have studied EADM to
solve different kinds of equations.

Problem Statement

The problem is to get the concentration as a function of time T , and location X as 2 miscible
fluids pass through porous medium on either side of the mixed zone. At T = 0, mixing
occurs longitudinally and transversally, and a spot of fluid owing a concentration of C0 is
administered over the process, as represented in Fig. 1. The spot also travels perpendicular to
the flowwithin the flow direction so that it forms an ellipse for a specific concentration ofCn .

Problem Formulation

Continuity equation by Darcy’s law for incompressible fluids is as follows:

∂ρ

∂T
+ ∇.(ρv̄) = 0, (1)

Here pore seepage velocity is given by v̄ and density is given by ρ.
When there is no growing or reducing of the dispersing material, the diffusion equation

for homogeneous medium is given as,

∂C

∂T
+ ∇.(C v̄) = ∇.

[
ρ D̄∇

(
C

ρ

)]
, (2)

Concentration of fluid is specified by C and coefficient of dispersion with 9 components Di j

is given by D. Here density is constant as we consider laminar flow in homogeneousmedium.
That implies
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Fig. 1 Longitudinal dispersion phenomenon

∇.v̄ = 0, (3)

Hence Eq. (2) is
∂C

∂T
+ v̄.∇C = ∇.

(
D̄∇C

)
. (4)

It is our assumption that seepage velocity v̄ is along the X -axis so that v̄ = U (X , T ). The
coefficients of longitudinal dispersion D11 ≈ DL ∼= K are non zero and remaining are zero.

So we rewrite Eq. (4) as
∂C

∂T
+U

∂C

∂X
= K

∂2C

∂X2 , (5)

For X > 0, DL > 0, U can be written as U = C(X ,T )
C0

[20].
The average cross-sectional concentration is given by C . At X = 0, the concentration is

consistent and significantly high, assuming it is C0 ∼= 1.
Therefore Eq. (5) is

∂C

∂T
+ C

∂C

∂X
= K

∂2C

∂X2 , (6)

Equation (6) is known as Burger’s equation which expresses the longitudinal dispersion.
Here initial and boundary conditions are

C(X , 0) = e−X , X ≥ 0,

C(0, T ) = 1, 0.001 ≤ T ≤ 0.01.
(7)

Here concentration decreases with distance X , so that the function is considered as negative
exponential for simplicity [20].

Implementation of Elzaki Adomian DecompositionMethod

Applying Elzaki transform to equation (6) and using differential properties of transform, we
get
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E [C(X , T )]

v
− vC(X , 0) + E [C .CX ] = E [K CXX ] ,

E [C(X , T )] − v2e−X + vE [C .CX ] = vE [K CXX ] , (8)

Using inverse of Elzaki transform on equation (8),

C(X , T ) = e−X − E−1 [vE {C .CX }] + E−1 [vE {K CXX }] , (9)

By applying the decomposition approach,

∞∑
n=0

Cn(X , T ) = e−X − E−1

[
vE

{ ∞∑
n=0

An

}]
+ E−1

[
vE

{
K

∞∑
n=0

CnXX

}]
, (10)

Collating results on each side of Eq. (10) and K = 1 [25],

C0(X , T ) = e−X ,

C1(X , T ) = −E−1 [vE (A0)] + E−1 [vE (C0XX )] ,

C2(X , T ) = −E−1 [vE (A1)] + E−1 [vE (C1XX )] ,

C3(X , T ) = −E−1 [vE (A2)] + E−1 [vE (C2XX )] ,

C4(X , T ) = −E−1 [vE (A3)] + E−1 [vE (C3XX )] ,

. . .

(11)

where An is the Adomian polynomial which shows the nonlinear term (C .CX ) which can be
computed using the formula described in [1]. Few components of Adomian polynomials are,

A0 = C0C0X ,

A1 = C0C1X + C1C0X ,

A2 = C0C2X + C1C1X + C2C0X ,

A3 = C1XC2 + C1C2X + C0XC3 + C0C3X ,

. . .

(12)

Employing Adomian polynomials (12) and the iteration formulas (11),

C0(X , T ) = e−X ,

C1(X , T ) =
(
e−X + e−2X

)
T ,

C2(X , T ) =
(
e−X + 6e−2X + 3e−3X

) T 2

2
,

C3(X , T ) =
(
e−X + 28e−2X + 51e−3X + 16e−4X

) T 3

6
,

C4(X , T ) =
(
e−X + 120e−2X + 606 e−3X + 568e−4X + 125e−5X

) T 4

24
,

. . .

(13)
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Fig. 2 Concentration versus time for various values of T

Fig. 3 Concentration versus distance for various values of X

The approximate solution is

C(X , T ) = e−X +
(
e−X + e−2X

)
T +

(
e−X + 6e−2X + 3e−3X

) T 2

2

+
(
e−X + 28e−2X + 51e−3X + 16e−4X

) T 3

6

+
(
e−X + 120e−2X + 606 e−3X + 568e−4X + 125e−5X

) T 4

24
+ · · · (14)

which is the solution of equation (6). The numerical solution of equation (14) is shown in
Table l and its graphical representations are shown in Figs. 2, 3, 4 and 5.
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Fig. 4 3D behaviour of concentration

Fig. 5 Comparison of solutions by EADM, VHPM and NITHPM for fixed time T = 0.005

Applying Corollary [27,28] for convergence analysis, we have

γ0 = ‖C1‖
‖C0‖ = 0.0136788 < 1,

γ1 = ‖C2‖
‖C1‖ = 0.0132076 < 1,

γ2 = ‖C3‖
‖C2‖ = 0.0175273 < 1,

γ3 = ‖C4‖
‖C3‖ = 0.0207543 < 1,

. . .

(15)

Hence, we can say that
∑∞

i=0 Ci is convergent. Therefore the approximate solutions given
by equation (15) is convergent.

123



Int. J. Appl. Comput. Math            (2021) 7:233 Page 7 of 10   233 

Table 1 The value of concentration for various distance X and time T = 0.001, 0.002, 0.003, . . . 0.010

X T = 0.001 T = 0.002 T = 0.003 T = 0.004 T = 0.005

0.1 0.906565 0.908301 0.910045 0.911797 0.913557

0.2 0.820223 0.821722 0.823227 0.824739 0.826258

0.3 0.74211 0.743408 0.744711 0.746019 0.747333

0.4 0.671442 0.672568 0.673698 0.674833 0.675972

0.5 0.607507 0.608486 0.60947 0.610456 0.611447

0.6 0.549663 0.550517 0.551375 0.552235 0.553098

0.7 0.49733 0.498076 0.498825 0.499577 0.500331

0.8 0.449981 0.450635 0.451291 0.451949 0.452609

0.9 0.407142 0.407717 0.408293 0.40887 0.409449

1 0.368383 0.368889 0.369395 0.369903 0.370412

X T = 0.006 T = 0.007 T = 0.008 T = 0.009 T = 0.010

0.1 0.915326 0.917104 0.91889 0.920684 0.922488

0.2 0.827784 0.829316 0.830856 0.832402 0.833955

0.3 0.748652 0.749977 0.751307 0.752643 0.753984

0.4 0.677116 0.678264 0.679417 0.680574 0.681735

0.5 0.612441 0.613438 0.61444 0.615444 0.616453

0.6 0.553964 0.554833 0.555705 0.55658 0.557458

0.7 0.501087 0.501846 0.502607 0.503371 0.504137

0.8 0.453272 0.453936 0.454602 0.45527 0.45594

0.9 0.41003 0.410612 0.411197 0.411782 0.41237

1 0.370923 0.371435 0.371948 0.372463 0.372979

Numerical Results and Discussion

Numerical and graphical representation of equation (14) is successfully obtained by using
EADM. Table 1 represents the numerical results of Cn(X , T ) for various values of X &
T = 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010. Figures 2 and 3
indicate the graphof concentration versus time and concentration versus distance respectively.
Figure 4 shows 3Dbehavior of concentration. Table 2 indicates the comparison of ElzakiAdo-
mianDecompositionMethod (EADM),VariationalHomotopyPerturbationMethod (VHPM)
and New integral transform homotopy perturbation method (NITHPM). Figure 5 shows the
comparison between the results acquired by various standard methods.

Conclusion

Here we have successfully applied EADM method to find an approximate solution of lon-
gitudinal dispersion phenomenon along with its convergence analysis. Also, from Table 1
it can be concluded that concentration decreases with distance of X and increases slightly
with time T . We also presume from Table 2 that there is an excellent agreement between
EADM, VHPM, and NITHPM. Analytical expressions are useful to study the accumulation
of salinity in groundwater and useful for predicting the possible pollution of groundwater.
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Thus, the proposed method is extremely reliable and efficient to find the solution of physical
phenomenon.
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